Monday, June 22, 2020
Hive FileFormats
TextFile Format
hive (cchitra)> create table olympics(athelete String,age INT,county STRING, year STRING,closing STRING, sport STRING,gold INT,silver INT,bronze INT,total INT) row format delimited fields terminated by '\t' stored as textfile;
OK
Time taken: 0.985 seconds
hive (cchitra)> show create table cchitra.olympics;
OK
CREATE TABLE `cchitra.olympics`(
`athelete` string,
`age` int,
`county` string,
`year` string,
`closing` string,
`sport` string,
`gold` int,
`silver` int,
`bronze` int,
`total` int)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://nn01.itversity.com:8020/apps/hive/warehouse/cchitra.db/olympics'
TBLPROPERTIES (
'numFiles'='1',
'numRows'='0',
'rawDataSize'='0',
'totalSize'='510053',
'transient_lastDdlTime'='1592698122')
Time taken: 0.248 seconds, Fetched: 25 row(s)
hive (cchitra)> load data local inpath '/home/nareshjella/ChitraFolder/hive/olympix_data.csv' into table cchitra.olympics;
Loading data to table cchitra.olympics
Table cchitra.olympics stats: [numFiles=1, numRows=0, totalSize=510053, rawDataSize=0]
OK
Time taken: 1.832 seconds
hive (cchitra)> describe cchitra.olympics;
OK
athelete string
age int
county string
year string
closing string
sport string
gold int
silver int
bronze int
total int
Time taken: 0.347 seconds, Fetched: 10 row(s)
hive (cchitra)> select * from cchitra.olympics limit 10;
OK
Michael Phelps 23 United States 2008 08-24-08 Swimming 8 0 0 8
Michael Phelps 19 United States 2004 08-29-04 Swimming 6 0 2 8
Michael Phelps 27 United States 2012 08-12-12 Swimming 4 2 0 6
Natalie Coughlin 25 United States 2008 08-24-08 Swimming 1 2 3 6
Aleksey Nemov 24 Russia 2000 10-01-00 Gymnastics 2 1 3 6
Alicia Coutts 24 Australia 2012 08-12-12 Swimming 1 3 1 5
Missy Franklin 17 United States 2012 08-12-12 Swimming 4 0 1 5
Ryan Lochte 27 United States 2012 08-12-12 Swimming 2 2 1 5
Allison Schmitt 22 United States 2012 08-12-12 Swimming 3 1 1 5
Natalie Coughlin 21 United States 2004 08-29-04 Swimming 2 2 1 5
Time taken: 0.654 seconds, Fetched: 10 row(s)
[nareshjella@gw02 hive]$ hadoop fs -ls /apps/hive/warehouse/cchitra.db/olympics/
Found 1 items
-rwxrwxrwx 2 nareshjella hdfs 510053 2020-06-20 20:08 /apps/hive/warehouse/cchitra.db/olympics/olympix_data.csv
[nareshjella@gw02 hive]$ hadoop fsck - /apps/hive/warehouse/cchitra.db/olympics/olympix_data.csv/ -files -blocks -locations
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
Connecting to namenode via http://172.16.1.101:50070/fsck?ugi=nareshjella&files=1&blocks=1&locations=1&path=%2Fapps%2Fhive%2Fwarehouse%2Fcchitra.db%2Folympics%2Folympix_data.csv
FSCK started by nareshjella (auth:SIMPLE) from /172.16.1.109 for path /apps/hive/warehouse/cchitra.db/olympics/olympix_data.csv at Sat Jun 20 20:28:07 EDT 2020
/apps/hive/warehouse/cchitra.db/olympics/olympix_data.csv 510053 bytes, 1 block(s): OK
0. BP-292116404-172.16.1.101-1479167821718:blk_1109867799_36146486 len=510053 repl=2 [DatanodeInfoWithStorage[172.16.1.108:50010,DS-698dde50-a336-4e00-bc8f-a9e1a5cc76f4,DISK], DatanodeInfoWithStorage[172.16.1.104:50010,DS-f4667aac-0f2c-463c-9584-d625928b9af5,DISK]]
Status: HEALTHY
Total size: 510053 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 1 (avg. block size 510053 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 5
Number of racks: 1
FSCK ended at Sat Jun 20 20:28:07 EDT 2020 in 1 milliseconds
The filesystem under path '/apps/hive/warehouse/cchitra.db/olympics/olympix_data.csv' is HEALTHY
SequenceFile Format
create table olympics_sequence(athelete String,age INT,county STRING, year STRING,closing STRING, sport STRING,gold INT,silver INT,bronze INT,total INT) row format delimited fields terminated by '\t' stored as sequencefile;
OK
Time taken: 0.282 seconds
scribe olympics_sequence;
OK
athelete string
age int
county string
year string
closing string
sport string
gold int
silver int
bronze int
total int
Time taken: 0.37 seconds, Fetched: 10 row(s)
how create table cchitra.olympics_sequence;
OK
CREATE TABLE `cchitra.olympics_sequence`(
`athelete` string,
`age` int,
`county` string,
`year` string,
`closing` string,
`sport` string,
`gold` int,
`silver` int,
`bronze` int,
`total` int)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat'
LOCATION
'hdfs://nn01.itversity.com:8020/apps/hive/warehouse/cchitra.db/olympics_sequence'
TBLPROPERTIES (
'COLUMN_STATS_ACCURATE'='{\"BASIC_STATS\":\"true\"}',
'numFiles'='1',
'numRows'='8620',
'rawDataSize'='501497',
'totalSize'='619664',
'transient_lastDdlTime'='1592699915')
Time taken: 0.161 seconds, Fetched: 26 row(s)
hive (cchitra)> insert overwrite table olympics_sequence
> select * from olympics;
Query ID = nareshjella_20200620203816_485dc31f-55f6-4ce2-9834-f410f1886ec2
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1589064448439_16792, Tracking URL = http://rm01.itversity.com:19088/proxy/application_1589064448439_16792/
Kill Command = /usr/hdp/2.6.5.0-292/hadoop/bin/hadoop job -kill job_1589064448439_16792
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2020-06-20 20:38:25,967 Stage-1 map = 0%, reduce = 0%
2020-06-20 20:38:32,257 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.81 sec
MapReduce Total cumulative CPU time: 2 seconds 810 msec
Ended Job = job_1589064448439_16792
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://nn01.itversity.com:8020/apps/hive/warehouse/cchitra.db/olympics_sequence/.hive-staging_hive_2020-06-20_20-38-16_923_2235400357686054193-1/-ext-10000
Loading data to table cchitra.olympics_sequence
Table cchitra.olympics_sequence stats: [numFiles=1, numRows=8620, totalSize=619664, rawDataSize=501497]
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Cumulative CPU: 2.81 sec HDFS Read: 515505 HDFS Write: 619751 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 810 msec
OK
Time taken: 18.569 seconds
hive (cchitra)> select * from olympics_sequence limit 10;
OK
Michael Phelps 23 United States 2008 08-24-08 Swimming 8 0 0 8
Michael Phelps 19 United States 2004 08-29-04 Swimming 6 0 2 8
Michael Phelps 27 United States 2012 08-12-12 Swimming 4 2 0 6
Natalie Coughlin 25 United States 2008 08-24-08 Swimming 1 2 3 6
Aleksey Nemov 24 Russia 2000 10-01-00 Gymnastics 2 1 3 6
Alicia Coutts 24 Australia 2012 08-12-12 Swimming 1 3 1 5
Missy Franklin 17 United States 2012 08-12-12 Swimming 4 0 1 5
Ryan Lochte 27 United States 2012 08-12-12 Swimming 2 2 1 5
Allison Schmitt 22 United States 2012 08-12-12 Swimming 3 1 1 5
Natalie Coughlin 21 United States 2004 08-29-04 Swimming 2 2 1 5
Time taken: 0.242 seconds, Fetched: 10 row(s)
nareshjella@gw02 hive]$ hadoop fs -ls /apps/hive/warehouse/cchitra.db/olympics_sequence
Found 1 items
-rwxrwxrwx 2 nareshjella hdfs 619664 2020-06-20 20:38 /apps/hive/warehouse/cchitra.db/olympics_sequence/000000_0
[nareshjella@gw02 hive]$ hadoop fsck - /apps/hive/warehouse/cchitra.db/olympics_sequence/000000_0/ -files -blocks -locations
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.
Connecting to namenode via http://172.16.1.101:50070/fsck?ugi=nareshjella&files=1&blocks=1&locations=1&path=%2Fapps%2Fhive%2Fwarehouse%2Fcchitra.db%2Folympics_sequence%2F000000_0
FSCK started by nareshjella (auth:SIMPLE) from /172.16.1.109 for path /apps/hive/warehouse/cchitra.db/olympics_sequence/000000_0 at Sat Jun 20 20:48:14 EDT 2020
/apps/hive/warehouse/cchitra.db/olympics_sequence/000000_0 619664 bytes, 1 block(s): OK
0. BP-292116404-172.16.1.101-1479167821718:blk_1109867871_36146558 len=619664 repl=2 [DatanodeInfoWithStorage[172.16.1.103:50010,DS-1f4edfab-2926-45f9-a37c-ae9d1f542680,DISK], DatanodeInfoWithStorage[172.16.1.102:50010,DS-1edb1d35-81bf-471b-be04-11d973e2a832,DISK]]
Status: HEALTHY
Total size: 619664 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 1 (avg. block size 619664 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 5
Number of racks: 1
FSCK ended at Sat Jun 20 20:48:14 EDT 2020 in 0 milliseconds
The filesystem under path '/apps/hive/warehouse/cchitra.db/olympics_sequence/000000_0' is HEALTHY
Thursday, June 11, 2020
[e023586@sandbox-hdp ~]$ spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://sandbox-hdp.hortonworks.com:4040
Spark context available as 'sc' (master = yarn, app id = application_1591918179668_0006).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.3.1.3.0.1.0-187
/_/
Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.8.0_191)
Type in expressions to have them evaluated.
Type :help for more information.
scala> :paste
// Entering paste mode (ctrl-D to finish)
val df = spark.read.options(Map("header" -> "true",
"inferSchema" -> "true",
"nullValue" -> "NA",
"timestampFormat" -> "yyyy-MM-dd'T'HH:mm:ss",
"mode" -> "failfast")
).csv("/user/e023586/notebook/spark/survey.csv")
// Exiting paste mode, now interpreting.
df: org.apache.spark.sql.DataFrame = [Timestamp: timestamp, Age: bigint ... 25 more fields]
scala>
scala>
scala>
scala>
scala> :paste
// Entering paste mode (ctrl-D to finish)
val df = spark.read
.format("csv")
.option("header","true")
.option("inferSchema","true")
.option("nullValue","NA")
.option("timestampFormat","yyyy-MM-dd'T'HH:mm:ss")
.option("mode","failfast")
.option("path","/user/e023586/notebook/spark/survey.csv")
.load()
// Exiting paste mode, now interpreting.
df: org.apache.spark.sql.DataFrame = [Timestamp: timestamp, Age: bigint ... 25 more fields]
scala> df.rdd.getNumPartitions
res0: Int = 1
scala> val df3 = df.repartition(3).toDF
df3: org.apache.spark.sql.DataFrame = [Timestamp: timestamp, Age: bigint ... 25 more fields]
scala> df3.rdd.getNumPartitions
res1: Int = 3
scala> df.select("Timestamp","Age","remote_work","leave").filter("Age >30").show
20/06/12 02:18:04 WARN Utils: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.
+-------------------+---+-----------+------------------+
| Timestamp|Age|remote_work| leave|
+-------------------+---+-----------+------------------+
|2014-08-27 11:29:31| 37| No| Somewhat easy|
|2014-08-27 11:29:37| 44| No| Don't know|
|2014-08-27 11:29:44| 32| No|Somewhat difficult|
|2014-08-27 11:29:46| 31| No|Somewhat difficult|
|2014-08-27 11:30:22| 31| Yes| Don't know|
|2014-08-27 11:31:22| 33| No| Don't know|
|2014-08-27 11:31:50| 35| Yes|Somewhat difficult|
|2014-08-27 11:32:05| 39| Yes| Don't know|
|2014-08-27 11:32:39| 42| No| Very difficult|
|2014-08-27 11:32:44| 31| Yes| Don't know|
|2014-08-27 11:33:23| 42| No|Somewhat difficult|
|2014-08-27 11:33:26| 36| No| Don't know|
|2014-08-27 11:34:37| 32| No| Don't know|
|2014-08-27 11:34:53| 46| Yes| Very easy|
|2014-08-27 11:35:08| 36| Yes| Somewhat easy|
|2014-08-27 11:35:24| 31| Yes|Somewhat difficult|
|2014-08-27 11:35:48| 46| Yes| Don't know|
|2014-08-27 11:36:24| 41| No| Don't know|
|2014-08-27 11:36:48| 33| No| Don't know|
|2014-08-27 11:37:08| 35| No| Very easy|
+-------------------+---+-----------+------------------+
only showing top 20 rows
scala> df.printSchema
root
|-- Timestamp: timestamp (nullable = true)
|-- Age: long (nullable = true)
|-- Gender: string (nullable = true)
|-- Country: string (nullable = true)
|-- state: string (nullable = true)
|-- self_employed: string (nullable = true)
|-- family_history: string (nullable = true)
|-- treatment: string (nullable = true)
|-- work_interfere: string (nullable = true)
|-- no_employees: string (nullable = true)
|-- remote_work: string (nullable = true)
|-- tech_company: string (nullable = true)
|-- benefits: string (nullable = true)
|-- care_options: string (nullable = true)
|-- wellness_program: string (nullable = true)
|-- seek_help: string (nullable = true)
|-- anonymity: string (nullable = true)
|-- leave: string (nullable = true)
|-- mental_health_consequence: string (nullable = true)
|-- phys_health_consequence: string (nullable = true)
|-- coworkers: string (nullable = true)
|-- supervisor: string (nullable = true)
|-- mental_health_interview: string (nullable = true)
|-- phys_health_interview: string (nullable = true)
|-- mental_vs_physical: string (nullable = true)
|-- obs_consequence: string (nullable = true)
|-- comments: string (nullable = true)
scala>
[nareshjella@gw02 ~]$
[nareshjella@gw02 ~]$ spark-shell --packages com.databricks:spark-csv_2.10:1.5.0
Multiple versions of Spark are installed but SPARK_MAJOR_VERSION is not set
Spark1 will be picked by default
Ivy Default Cache set to: /home/nareshjella/.ivy2/cache
The jars for the packages stored in: /home/nareshjella/.ivy2/jars
:: loading settings :: url = jar:file:/usr/hdp/2.6.5.0-292/spark/lib/spark-assembly-1.6.3.2.6.5.0-292-hadoop2.7.3.2.6.5.0-292.jar!/org/apache/ivy/core/settings/ivysettings.xml
com.databricks#spark-csv_2.10 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
confs: [default]
found com.databricks#spark-csv_2.10;1.5.0 in central
found org.apache.commons#commons-csv;1.1 in central
found com.univocity#univocity-parsers;1.5.1 in central
downloading https://repo1.maven.org/maven2/com/databricks/spark-csv_2.10/1.5.0/spark-csv_2.10-1.5.0.jar ...
[SUCCESSFUL ] com.databricks#spark-csv_2.10;1.5.0!spark-csv_2.10.jar (36ms)
downloading https://repo1.maven.org/maven2/org/apache/commons/commons-csv/1.1/commons-csv-1.1.jar ...
[SUCCESSFUL ] org.apache.commons#commons-csv;1.1!commons-csv.jar (14ms)
downloading https://repo1.maven.org/maven2/com/univocity/univocity-parsers/1.5.1/univocity-parsers-1.5.1.jar ...
[SUCCESSFUL ] com.univocity#univocity-parsers;1.5.1!univocity-parsers.jar (28ms)
:: resolution report :: resolve 1500ms :: artifacts dl 82ms
:: modules in use:
com.databricks#spark-csv_2.10;1.5.0 from central in [default]
com.univocity#univocity-parsers;1.5.1 from central in [default]
org.apache.commons#commons-csv;1.1 from central in [default]
---------------------------------------------------------------------
| | modules || artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|
---------------------------------------------------------------------
| default | 3 | 3 | 3 | 0 || 3 | 3 |
---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent
confs: [default]
3 artifacts copied, 0 already retrieved (342kB/6ms)
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.6.3
/_/
Using Scala version 2.10.5 (OpenJDK 64-Bit Server VM, Java 1.8.0_222)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.
scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext
scala> val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").load("/home/nareshjella/notebook/spark/survey.csv")
org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://nn01.itversity.com:8020/home/nareshjella/notebook/spark/survey.csv
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:202)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1314)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:323)
at org.apache.spark.rdd.RDD.take(RDD.scala:1309)
at org.apache.spark.rdd.RDD$$anonfun$first$1.apply(RDD.scala:1349)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:323)
at org.apache.spark.rdd.RDD.first(RDD.scala:1348)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:269)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:265)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:242)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:74)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:171)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:26)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:33)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:35)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:37)
at $iwC$$iwC$$iwC.<init>(<console>:39)
at $iwC$$iwC.<init>(<console>:41)
at $iwC.<init>(<console>:43)
at <init>(<console>:45)
at .<init>(<console>:49)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:750)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
scala> val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").load("/user/nareshjella/notebook/spark/survey.csv")
df: org.apache.spark.sql.DataFrame = [Timestamp: timestamp, Age: bigint, Gender: string, Country: string, state: string, self_employed: string, family_history: string, treatment: string, work_interfere: string, no_employees: string, remote_work: string, tech_company: string, benefits: string, care_options: string, wellness_program: string, seek_help: string, anonymity: string, leave: string, mental_health_consequence: string, phys_health_consequence: string, coworkers: string, supervisor: string, mental_health_interview: string, phys_health_interview: string, mental_vs_physical: string, obs_consequence: string, comments: string]
scala> df.select("Timestamp","Age","remote_work","leave").filter("Age >30").show
+--------------------+---+-----------+------------------+
| Timestamp|Age|remote_work| leave|
+--------------------+---+-----------+------------------+
|2014-08-27 11:29:...| 37| No| Somewhat easy|
|2014-08-27 11:29:...| 44| No| Don't know|
|2014-08-27 11:29:...| 32| No|Somewhat difficult|
|2014-08-27 11:29:...| 31| No|Somewhat difficult|
|2014-08-27 11:30:...| 31| Yes| Don't know|
|2014-08-27 11:31:...| 33| No| Don't know|
|2014-08-27 11:31:...| 35| Yes|Somewhat difficult|
|2014-08-27 11:32:...| 39| Yes| Don't know|
|2014-08-27 11:32:...| 42| No| Very difficult|
|2014-08-27 11:32:...| 31| Yes| Don't know|
|2014-08-27 11:33:...| 42| No|Somewhat difficult|
|2014-08-27 11:33:...| 36| No| Don't know|
|2014-08-27 11:34:...| 32| No| Don't know|
|2014-08-27 11:34:...| 46| Yes| Very easy|
|2014-08-27 11:35:...| 36| Yes| Somewhat easy|
|2014-08-27 11:35:...| 31| Yes|Somewhat difficult|
|2014-08-27 11:35:...| 46| Yes| Don't know|
|2014-08-27 11:36:...| 41| No| Don't know|
|2014-08-27 11:36:...| 33| No| Don't know|
|2014-08-27 11:37:...| 35| No| Very easy|
+--------------------+---+-----------+------------------+
only showing top 20 rows
scala>
HDFS Admin Commands:
[hdfs@sandbox-hdp ~]$ hdfs cacheadmin
Usage: bin/hdfs cacheadmin [COMMAND]
[-addDirective -path <path> -pool <pool-name> [-force] [-replication <replication>] [-ttl <time-to-live>]]
[-modifyDirective -id <id> [-path <path>] [-force] [-replication <replication>] [-pool <pool-name>] [-ttl <time-to-live>]]
[-listDirectives [-stats] [-path <path>] [-pool <pool>] [-id <id>]]
[-removeDirective <id>]
[-removeDirectives -path <path>]
[-addPool <name> [-owner <owner>] [-group <group>] [-mode <mode>] [-limit <limit>] [-defaultReplication <defaultReplication>] [-maxTtl <maxTtl>]]
[-modifyPool <name> [-owner <owner>] [-group <group>] [-mode <mode>] [-limit <limit>] [-defaultReplication <defaultReplication>] [-maxTtl <maxTtl>]]
[-removePool <name>]
[-listPools [-stats] [<name>]]
[-help <command-name>]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs crypto
Usage: bin/hdfs crypto [COMMAND]
[-createZone -keyName <keyName> -path <path>]
[-listZones]
[-provisionTrash -path <path>]
[-getFileEncryptionInfo -path <path>]
[-reencryptZone <action> -path <zone>]
[-listReencryptionStatus]
[-help <command-name>]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs debug
Usage: hdfs debug <command> [arguments]
These commands are for advanced users only.
Incorrect usages may result in data loss. Use at your own risk.
verifyMeta -meta <metadata-file> [-block <block-file>]
computeMeta -block <block-file> -out <output-metadata-file>
recoverLease -path <path> [-retries <num-retries>]
[hdfs@sandbox-hdp ~]$ hdfs dfsadmin
Usage: hdfs dfsadmin
Note: Administrative commands can only be run as the HDFS superuser.
[-report [-live] [-dead] [-decommissioning] [-enteringmaintenance] [-inmaintenance]]
[-safemode <enter | leave | get | wait>]
[-saveNamespace [-beforeShutdown]]
[-rollEdits]
[-restoreFailedStorage true|false|check]
[-refreshNodes]
[-setQuota <quota> <dirname>...<dirname>]
[-clrQuota <dirname>...<dirname>]
[-setSpaceQuota <quota> [-storageType <storagetype>] <dirname>...<dirname>]
[-clrSpaceQuota [-storageType <storagetype>] <dirname>...<dirname>]
[-finalizeUpgrade]
[-rollingUpgrade [<query|prepare|finalize>]]
[-upgrade <query | finalize>]
[-refreshServiceAcl]
[-refreshUserToGroupsMappings]
[-refreshSuperUserGroupsConfiguration]
[-refreshCallQueue]
[-refresh <host:ipc_port> <key> [arg1..argn]
[-reconfig <namenode|datanode> <host:ipc_port> <start|status|properties>]
[-printTopology]
[-refreshNamenodes datanode_host:ipc_port]
[-getVolumeReport datanode_host:ipc_port]
[-deleteBlockPool datanode_host:ipc_port blockpoolId [force]]
[-setBalancerBandwidth <bandwidth in bytes per second>]
[-getBalancerBandwidth <datanode_host:ipc_port>]
[-fetchImage <local directory>]
[-allowSnapshot <snapshotDir>]
[-disallowSnapshot <snapshotDir>]
[-shutdownDatanode <datanode_host:ipc_port> [upgrade]]
[-evictWriters <datanode_host:ipc_port>]
[-getDatanodeInfo <datanode_host:ipc_port>]
[-metasave filename]
[-triggerBlockReport [-incremental] <datanode_host:ipc_port>]
[-listOpenFiles [-blockingDecommission] [-path <path>]]
[-help [cmd]]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs dfsrouteradmin
Not enough parameters specified
Federation Admin Tools:
[-add <source> <nameservice1, nameservice2, ...> <destination> [-readonly] [-order HASH|LOCAL|RANDOM|HASH_ALL] -owner <owner> -group <group> -mode <mode>]
[-update <source> <nameservice1, nameservice2, ...> <destination> [-readonly] [-order HASH|LOCAL|RANDOM|HASH_ALL] -owner <owner> -group <group> -mode <mode>]
[-rm <source>]
[-ls <path>]
[-setQuota <path> -nsQuota <nsQuota> -ssQuota <quota in bytes or quota size string>]
[-clrQuota <path>]
[-safemode enter | leave | get]
[-nameservice enable | disable <nameservice>]
[-getDisabledNameservices]
[hdfs@sandbox-hdp ~]$ hdfs ec
Usage: bin/hdfs ec [COMMAND]
[-listPolicies]
[-addPolicies -policyFile <file>]
[-getPolicy -path <path>]
[-removePolicy -policy <policy>]
[-setPolicy -path <path> [-policy <policy>] [-replicate]]
[-unsetPolicy -path <path>]
[-listCodecs]
[-enablePolicy -policy <policy>]
[-disablePolicy -policy <policy>]
[-help <command-name>]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs fsck
Usage: hdfs fsck <path> [-list-corruptfileblocks | [-move | -delete | -openforwrite] [-files [-blocks [-locations | -racks | -replicaDetails | -upgradedomains]]]] [-includeSnapshots] [-showprogress] [-storagepolicies] [-maintenance] [-blockId <blk_Id>]
<path> start checking from this path
-move move corrupted files to /lost+found
-delete delete corrupted files
-files print out files being checked
-openforwrite print out files opened for write
-includeSnapshots include snapshot data if the given path indicates a snapshottable directory or there are snapshottable directories under it
-list-corruptfileblocks print out list of missing blocks and files they belong to
-files -blocks print out block report
-files -blocks -locations print out locations for every block
-files -blocks -racks print out network topology for data-node locations
-files -blocks -replicaDetails print out each replica details
-files -blocks -upgradedomains print out upgrade domains for every block
-storagepolicies print out storage policy summary for the blocks
-maintenance print out maintenance state node details
-showprogress show progress in output. Default is OFF (no progress)
-blockId print out which file this blockId belongs to, locations (nodes, racks) of this block, and other diagnostics info (under replicated, corrupted or not, etc)
Please Note:
1. By default fsck ignores files opened for write, use -openforwrite to report such files. They are usually tagged CORRUPT or HEALTHY depending on their block allocation status
2. Option -includeSnapshots should not be used for comparing stats, should be used only for HEALTH check, as this may contain duplicates if the same file present in both original fs tree and inside snapshots.
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs haadmin
Usage: haadmin [-ns <nameserviceId>]
[-transitionToActive [--forceactive] <serviceId>]
[-transitionToStandby <serviceId>]
[-failover [--forcefence] [--forceactive] <serviceId> <serviceId>]
[-getServiceState <serviceId>]
[-getAllServiceState]
[-checkHealth <serviceId>]
[-help <command>]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs jmxget
init: server=localhost;port=;service=NameNode;localVMUrl=null
Domains:
Domain = JMImplementation
Domain = com.sun.management
Domain = java.lang
Domain = java.nio
Domain = java.util.logging
MBeanServer default domain = DefaultDomain
MBean count = 22
Query MBeanServer MBeans:
List of all the available keys:
[hdfs@sandbox-hdp ~]$
[hdfs@sandbox-hdp ~]$
[hdfs@sandbox-hdp ~]$
[hdfs@sandbox-hdp ~]$ hdfs oev
Usage: bin/hdfs oev [OPTIONS] -i INPUT_FILE -o OUTPUT_FILE
Offline edits viewer
Parse a Hadoop edits log file INPUT_FILE and save results
in OUTPUT_FILE.
Required command line arguments:
-i,--inputFile <arg> edits file to process, xml (case
insensitive) extension means XML format,
any other filename means binary format.
XML/Binary format input file is not allowed
to be processed by the same type processor.
-o,--outputFile <arg> Name of output file. If the specified
file exists, it will be overwritten,
format of the file is determined
by -p option
Optional command line arguments:
-p,--processor <arg> Select which type of processor to apply
against image file, currently supported
processors are: binary (native binary format
that Hadoop uses), xml (default, XML
format), stats (prints statistics about
edits file)
-h,--help Display usage information and exit
-f,--fix-txids Renumber the transaction IDs in the input,
so that there are no gaps or invalid
transaction IDs.
-r,--recover When reading binary edit logs, use recovery
mode. This will give you the chance to skip
corrupt parts of the edit log.
-v,--verbose More verbose output, prints the input and
output filenames, for processors that write
to a file, also output to screen. On large
image files this will dramatically increase
processing time (default is false).
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$ hdfs oiv
Usage: bin/hdfs oiv [OPTIONS] -i INPUTFILE -o OUTPUTFILE
Offline Image Viewer
View a Hadoop fsimage INPUTFILE using the specified PROCESSOR,
saving the results in OUTPUTFILE.
The oiv utility will attempt to parse correctly formed image files
and will abort fail with mal-formed image files.
The tool works offline and does not require a running cluster in
order to process an image file.
The following image processors are available:
* XML: This processor creates an XML document with all elements of
the fsimage enumerated, suitable for further analysis by XML
tools.
* ReverseXML: This processor takes an XML file and creates a
binary fsimage containing the same elements.
* FileDistribution: This processor analyzes the file size
distribution in the image.
-maxSize specifies the range [0, maxSize] of file sizes to be
analyzed (128GB by default).
-step defines the granularity of the distribution. (2MB by default)
-format formats the output result in a human-readable fashion
rather than a number of bytes. (false by default)
* Web: Run a viewer to expose read-only WebHDFS API.
-addr specifies the address to listen. (localhost:5978 by default)
It does not support secure mode nor HTTPS.
* Delimited (experimental): Generate a text file with all of the elements common
to both inodes and inodes-under-construction, separated by a
delimiter. The default delimiter is \t, though this may be
changed via the -delimiter argument.
Required command line arguments:
-i,--inputFile <arg> FSImage or XML file to process.
Optional command line arguments:
-o,--outputFile <arg> Name of output file. If the specified
file exists, it will be overwritten.
(output to stdout by default)
If the input file was an XML file, we
will also create an <outputFile>.md5 file.
-p,--processor <arg> Select which type of processor to apply
against image file. (XML|FileDistribution|
ReverseXML|Web|Delimited)
The default is Web.
-delimiter <arg> Delimiting string to use with Delimited processor.
-t,--temp <arg> Use temporary dir to cache intermediate result to generate
Delimited outputs. If not set, Delimited processor constructs
the namespace in memory before outputting text.
-h,--help Display usage information and exit
[hdfs@sandbox-hdp ~]$ hdfs oiv_legacy
Usage: bin/hdfs oiv_legacy [OPTIONS] -i INPUTFILE -o OUTPUTFILE
Offline Image Viewer
View a Hadoop fsimage INPUTFILE using the specified PROCESSOR,
saving the results in OUTPUTFILE.
The oiv utility will attempt to parse correctly formed image files
and will abort fail with mal-formed image files.
The tool works offline and does not require a running cluster in
order to process an image file.
The following image processors are available:
* Ls: The default image processor generates an lsr-style listing
of the files in the namespace, with the same fields in the same
order. Note that in order to correctly determine file sizes,
this formatter cannot skip blocks and will override the
-skipBlocks option.
* Indented: This processor enumerates over all of the elements in
the fsimage file, using levels of indentation to delineate
sections within the file.
* Delimited: Generate a text file with all of the elements common
to both inodes and inodes-under-construction, separated by a
delimiter. The default delimiter is , though this may be
changed via the -delimiter argument. This processor also overrides
the -skipBlocks option for the same reason as the Ls processor
* XML: This processor creates an XML document with all elements of
the fsimage enumerated, suitable for further analysis by XML
tools.
* FileDistribution: This processor analyzes the file size
distribution in the image.
-maxSize specifies the range [0, maxSize] of file sizes to be
analyzed (128GB by default).
-step defines the granularity of the distribution. (2MB by default)
-format formats the output result in a human-readable fashion
rather than a number of bytes. (false by default)
* NameDistribution: This processor analyzes the file names
in the image and prints total number of file names and how frequently
file names are reused.
Required command line arguments:
-i,--inputFile <arg> FSImage file to process.
-o,--outputFile <arg> Name of output file. If the specified
file exists, it will be overwritten.
Optional command line arguments:
-p,--processor <arg> Select which type of processor to apply
against image file. (Ls|XML|Delimited|Indented|FileDistribution|NameDistribution).
-h,--help Display usage information and exit
-printToScreen For processors that write to a file, also
output to screen. On large image files this
will dramatically increase processing time.
-skipBlocks Skip inodes' blocks information. May
significantly decrease output.
(default = false).
-delimiter <arg> Delimiting string to use with Delimited processor
[hdfs@sandbox-hdp ~]$ hdfs storagepolicies
Usage: bin/hdfs storagepolicies [COMMAND]
[-listPolicies]
[-setStoragePolicy -path <path> -policy <policy>]
[-getStoragePolicy -path <path>]
[-unsetStoragePolicy -path <path>]
[-help <command-name>]
Generic options supported are:
-conf <configuration file> specify an application configuration file
-D <property=value> define a value for a given property
-fs <file:///|hdfs://namenode:port> specify default filesystem URL to use, overrides 'fs.defaultFS' property from configurations.
-jt <local|resourcemanager:port> specify a ResourceManager
-files <file1,...> specify a comma-separated list of files to be copied to the map reduce cluster
-libjars <jar1,...> specify a comma-separated list of jar files to be included in the classpath
-archives <archive1,...> specify a comma-separated list of archives to be unarchived on the compute machines
The general command line syntax is:
command [genericOptions] [commandOptions]
[hdfs@sandbox-hdp ~]$
HDFS Commands
[hdfs@sandbox-hdp ~]$ hdfs
Usage: hdfs [OPTIONS] SUBCOMMAND [SUBCOMMAND OPTIONS]
OPTIONS is none or any of:
--buildpaths attempt to add class files from build tree
--config dir Hadoop config directory
--daemon (start|status|stop) operate on a daemon
--debug turn on shell script debug mode
--help usage information
--hostnames list[,of,host,names] hosts to use in worker mode
--hosts filename list of hosts to use in worker mode
--loglevel level set the log4j level for this command
--workers turn on worker mode
SUBCOMMAND is one of:
Admin Commands:
cacheadmin configure the HDFS cache
crypto configure HDFS encryption zones
debug run a Debug Admin to execute HDFS debug commands
dfsadmin run a DFS admin client
dfsrouteradmin manage Router-based federation
ec run a HDFS ErasureCoding CLI
fsck run a DFS filesystem checking utility
haadmin run a DFS HA admin client
jmxget get JMX exported values from NameNode or DataNode.
oev apply the offline edits viewer to an edits file
oiv apply the offline fsimage viewer to an fsimage
oiv_legacy apply the offline fsimage viewer to a legacy fsimage
storagepolicies list/get/set block storage policies
Client Commands:
classpath prints the class path needed to get the hadoop jar and the required libraries
dfs run a filesystem command on the file system
envvars display computed Hadoop environment variables
fetchdt fetch a delegation token from the NameNode
getconf get config values from configuration
groups get the groups which users belong to
lsSnapshottableDir list all snapshottable dirs owned by the current user
snapshotDiff diff two snapshots of a directory or diff the current directory contents with a snapshot
version print the version
Daemon Commands:
balancer run a cluster balancing utility
datanode run a DFS datanode
dfsrouter run the DFS router
diskbalancer Distributes data evenly among disks on a given node
httpfs run HttpFS server, the HDFS HTTP Gateway
journalnode run the DFS journalnode
mover run a utility to move block replicas across storage types
namenode run the DFS namenode
nfs3 run an NFS version 3 gateway
portmap run a portmap service
secondarynamenode run the DFS secondary namenode
zkfc run the ZK Failover Controller daemon
SUBCOMMAND may print help when invoked w/o parameters or with -h.
[hdfs@sandbox-hdp ~]$
Admin Commands:
Client Commands:
Daemon Commands:
Ambari Commands
Ambari Status
|
/sbin/service
ambari-server status
|
Start Ambari
|
/sbin/service
ambari-server start
|
Stop Amabri
|
/sbin/service
ambari-server stop
|
Reset ambari admin
pwd
|
ambari-admin-password-reset
|
Ambari ldap sync
|
ambari-server sync-ldap --users
users.txt --groups groups.txt
|
ambari-server
--version
|
Ambari version
|
ambari-server
--hash
|
Ambari server hash
value
|
Ambari-server
backup
|
To take backup of
ambari settings
|
Decommission a data node in HDP
From Ambari :
Manually :
[root@namenode1 conf]# pwd
/etc/hadoop/conf
[root@namenode1 conf]# ll | grep dfs.exclude
-rw-r--r--. 1 hdfs hadoop 1 Jan 12 15:32 dfs.exclude
[root@namenode1 conf]# cat dfs.exclude
[root@namenode1 conf]# vi dfs.exclude
[root@namenode1 conf]# cat dfs.exclude
edgenode.hdp.cn
[root@namenode1 conf]# su - hdfs
Last login: Sun Jan 12 15:33:08 EST 2020
[hdfs@namenode1 ~]$ hdfs dfsadmin -refreshNodes
Refresh nodes successful
[hdfs@namenode1 ~]$
Subscribe to:
Posts (Atom)